The Graphical Horseshoe Estimator for Inverse Covariance Matrices
نویسندگان
چکیده
منابع مشابه
Factored sparse inverse covariance matrices
Most HMM-based speech recognition systems use Gaussian mixtures as observation probability density functions. An important goal in all such systems is to improve parsimony. One method is to adjust the type of covariance matrices used. In this work, factored sparse inverse covariance matrices are introduced. Based on U DU factorization, the inverse covariance matrix can be represented using line...
متن کاملthe inverse of covariance matrices for the arma (p, q) class of processes
analysis of time series data can involve the inversion of large covariance matrices. for theclass of arma (p, q) processes there are no exact explicit expressions for these inverses, except for thema (1) process. in practice, the sample covariance matrix can be very large and inversion can becomputationally time consuming and so approximate explicit expressions for the inverse are desirable.thi...
متن کاملA well-conditioned estimator for large-dimensional covariance matrices
Many applied problems require a covariance matrix estimator that is not only invertible, but also well-conditioned (that is, inverting it does not amplify estimation error). For largedimensional covariance matrices, the usual estimator—the sample covariance matrix—is typically not well-conditioned and may not even be invertible. This paper introduces an estimator that is both well-conditioned a...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Horseshoe Estimator for Sparse Signals
This paper proposes a new approach to sparse-signal detection called the horseshoe estimator. We show that the horseshoe is a close cousin of the lasso in that it arises from the same class of multivariate scale mixtures of normals, but that it is almost universally superior to the double-exponential prior at handling sparsity. A theoretical framework is proposed for understanding why the horse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2019
ISSN: 1061-8600,1537-2715
DOI: 10.1080/10618600.2019.1575744